22,711 research outputs found

    Synergistic degradation of lignocellulose by fungi and bacteria in boreal forest soil

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2015Boreal forests contain an estimated 28% of the world's soil carbon, and currently act as a significant global carbon sink. Plant-derived lignocellulose is a major component of soil carbon, and its decomposition is dependent on soil bacteria and fungi. In order to predict the fate of this soil carbon and its potential feedbacks to climate change, the identities, activity, and interactions of soil microbial decomposer communities must be better understood. This study used stable isotope probing (SIP) with ¹³C-labeled lignocellulose and two of its constituents, cellulose and vanillin, to identify microbes responsible for the processing of lignocellulose-derived carbon and examine the specific roles that they perform. Results indicate that multiple taxa are involved in lignocellulose processing, and that certain taxa target specific portions of the lignocellulose macromolecule; specifically, fungi dominate the degradation of lignocellulose and cellulose macromolecules, while bacteria scavenge aromatic lignocellulose monomers. Major fungal taxa involved in lignocellulose degradation include Ceratobasidium, Geomyces, and Sebacina, among others. Bacterial taxa processing lignocellulose and cellulose included Cellvibrio and Mesorhizobium in high abundance relative to other taxa, although Burkholderia were the primary vanillin consumers. These results elucidate some of the major players in lignocellulose decomposition and their specific roles in boreal forest soil. This information provides knowledge of small-scale microbial processes that dictate ecosystem-level carbon cycling, and can assist in predictions of the fate of boreal forest carbon stocks

    Foraging ecology of common dolphins (Delphinus sp.) in the Hauraki Gulf, New Zealand : a thesis presented in fulfilment of the requirements for the degree of Master of Science (Zoology), Massey University, Albany, New Zealand

    Get PDF
    This study investigated the foraging ecology of common dolphins (Delphinus sp.) in the Hauraki Gulf Marine Park, off the east coast of Auckland. New Zealand. Like most species of small cetacea in the Southern Hemisphere, its foraging habits are poorly described. A total of 59 focal group follows of common dolphins were conducted between January and April 2006. Observations were conducted at the surface, recording the predominant behavioural state of the group, foraging phase, foraging strategy, group dispersion, group formation, swimming style, group heading, calf presence and associated species. All occurrences of fission-fusion events and surface behaviours were recorded. This study tested the hypothesis that foraging behaviour of common dolphins would be influenced by environmental and physical parameters, group size, calf presence and associations with other species. In the Hauraki Gulf, foraging behaviour was recorded during all common dolphin follows, with 14% ± 1.7 (mean ± s.e.) of time spent feeding. Larger groups of dolphins spent more time foraging than smaller groups. Herding accounted for a large part of the foraging behaviour of common dolphins (mean ± s.e. = 28% ± 2.3. n = 54). Larger groups were found to spend significantly more time herding than smaller groups. Herding was generally directed towards the nearest landmass. Common dolphins use a variety of foraging strategies, both individual and group coordinated strategies. High-speed pursuits (n = 29) and kerplunkmg (n= 15) were the only individual foraging strategies recorded. Coordinated feeding strategies employed were synchronous diving (n = 50), Ime-abreast (n = 28), carouselling (n = 26) and wall-formation (n = 4). Synchronous diving and carouselling were the most enduring strategies, accounting for a significant proportion of foraging behaviour (mean ± s.e. - 32% ± 0.05 and 24% ± 0.08 of instantaneous samples, respectively). Foraging strategies were typified by vanous group formations, dispersion between group members, swimming styles and breathing intervals. Foraging strategies were also observed to have different roles in dolphin foraging. Line-abreast and wall- formation were associated with herding. However, high-speed pursuit, kerplunking and carouselling were strategies synonymous with feeding. Foraging strategies were shown to be dynamic, with dolphin groups changing strategies within a foraging bout (mean ± s.e. = 3 ± 0.4). Larger groups spent more time engaged in coordinated foraging strategies than smaller groups. Noisy surface behaviours and fission-fusion events were frequently seen in synchrony with foraging behaviour. Calves present in a foraging group, typically assumed a central position in the group during herding, but remained on the periphery during feeding. When feeding, common dolphins frequently were associated with Australasian gannets (Morus senator), shearwaters (Puffinus spp.) and Bryde's whales (Balaenoptera brydei) Observations on the predatory behaviour of each species suggested a temporary close association between birds, whales and dolphins. This study showed an association of Australasian gannet flocks (n =46) and Bryde's whales (n = 27) with common dolphins, and described the nature of the joint aggregations of mixed-species feeding in the Hauraki Gulf. The behaviour of gannots and whales strongly coincided with that of the foraging dolphin group. Whales were recorded tracking behind foraging dolphins for up to one and a half hours (mean ± s.e. = 23 min ± 2.3). Observations suggest that the relationship between gannets and whales with common dolphins was deliberate, and that these species take advantage of the superior ability of dolphins to locate and concentrate prey. The associations with gannets and whales had a significant impact on common dolphin foraging behaviour. Duration of the phenomenon was predicted to be a direct function of the quantity of prey fish available. The presence of a whale had a sizable impact on the diffusion of feeding aggregations. Results from this study indicate that the benefits of coordinated team hunts implemented by common dolphins in the Hauraki Gulf are a key factor in their foraging ecology. Their cooperative foraging skills appear to not only benefit the common dolphin individual, but other species as well. Ultimately, their role as a social hunter and an abundant, apex predator in the ocean, suggests that the common dolphin is a strongly interacting species which may facilitate population viability of other species in the Hauraki Gulf ecosystem

    The use of arc-suppression coils in power systems with open-delta regulators

    Get PDF
    Arc-suppression coil systems are able to improve high voltage system reliability and safety. If these systems are used in high voltage power distribution networks which incorporate open-delta regulators, dangerous over-voltages can occur. Because the open-delta regulators increase the line to earth voltage in two phases only, out of balance line to earth capacitance currents flow through the arc-suppression coil. It is shown that under certain conditions the resultant system voltages can reach dangerous levels. It is recommended that a detailed analysis be carried out before arc-suppression coils and open-delta regulators are installed in the same power system

    Study of space cabin atmospheres Semiannual status report, 1 Jul. - 31 Dec. 1965

    Get PDF
    Space cabin atmospheres - space cabin aerosol sampling device, field aerosol generator, and survey of particle counter design

    Promises, Impositions, and other Directionals

    Get PDF
    Promises, impositions, proposals, predictions, and suggestions are categorized as voluntary co-operational methods. The class of voluntary co-operational methods is included in the class of so-called directionals. Directionals are mechanisms supporting the mutual coordination of autonomous agents. Notations are provided capable of expressing residual fragments of directionals. An extensive example, involving promises about the suitability of programs for tasks imposed on the promisee is presented. The example illustrates the dynamics of promises and more specifically the corresponding mechanism of trust updating and credibility updating. Trust levels and credibility levels then determine the way certain promises and impositions are handled. The ubiquity of promises and impositions is further demonstrated with two extensive examples involving human behaviour: an artificial example about an agent planning a purchase, and a realistic example describing technology mediated interaction concerning the solution of pay station failure related problems arising for an agent intending to leave the parking area.Comment: 55 page

    The Stability of Branonium

    Full text link
    We analyse the orbital motion of a light anti D6-brane in the presence of a stack of heavy, distant D6-branes in ten dimensions, taking account of possible time-variations in the background moduli fields. The Coulomb-like central potential arising through brane-antibrane interactions is then modified to include time-dependent prefactors, which generally preclude the existence of stable elliptical orbits.Comment: 13 pages, Latex, 3 eps figure

    Soil organic carbon and root distribution in a temperate arable agroforestry system

    Get PDF
    Aim To determine, for arable land in a temperate area, the effect of tree establishment and intercropping treatments, on the distribution of roots and soil organic carbon to a depth of 1.5 m. Methods A poplar (Populus sp.) silvoarable agroforestry experiment including arable controls was established on arable land in lowland England in 1992. The trees were intercropped with an arable rotation or bare fallow for the first 11 years, thereafter grass was allowed to establish. Coarse and fine root distributions (to depths of up to 1.5 m and up to 5 m from the trees) were measured in 1996, 2003, and 2011. The amount and type of soil carbon to 1.5 m depth was also measured in 2011. Results The trees, initially surrounded by arable crops rather than fallow, had a deeper coarse root distribution with less lateral expansion. In 2011, the combined length of tree and understorey vegetation roots was greater in the agroforestry treatments than the control, at depths below 0.9 m. Between 0 and 1.5 m depth, the fine root carbon in the agroforestry treatment (2.56 t ha-1) was 79% greater than that in the control (1.43 t ha-1). Although the soil organic carbon in the top 0.6 m under the trees (161 t C ha-1) was greater than in the control (142 t C ha-1), a tendency for smaller soil carbon levels beneath the trees at lower depths, meant that there was no overall tree effect when a 1.5 m soil depth was considered. From a limited sample, there was no tree effect on the proportion of recalcitrant soil organic carbon. Conclusions The observed decline in soil carbon beneath the trees at soil depths greater than 60 cm, if observed elsewhere, has important implication for assessments of the role of afforestation and agroforestry in sequestering carbon
    • …
    corecore